Complex coordination of multi-scale cellular responses to environmental stress.

نویسندگان

  • Luís L Fonseca
  • Claudia Sánchez
  • Helena Santos
  • Eberhard O Voit
چکیده

Cells and organisms are regularly exposed to a variety of stresses, and effective responses are a matter of survival. The article describes a multi-scale experimental and dynamical modeling analysis that clearly indicates concerted stress control in different temporal and organizational domains, and a strong synergy between the dynamics of genes, proteins and metabolites. Specifically, we show with in vivo NMR measurements of metabolic profiles that baker's yeast responds to a paradigmatic stress, heat, at three organizational levels and in two time regimes. At the metabolic level, an almost immediate response is mounted. However, this response is a "quick fix" in comparison to a much more effective response that had been pre-organized in earlier periods of heat stress and is an order of magnitude stronger. Equipped with the metabolic profile data, our modeling efforts resulted in a crisp, quantitative separation of response actions at the levels of metabolic control and gene regulation. They also led to predictions of necessary changes in protein levels and clearly demonstrated that formerly observed temperature profiles of key enzyme activities are not sufficient to explain the accumulation of trehalose as an immediate response to sudden heat stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P146: Gamma Aminobutyric Acid (GABA) and its Alterations in Stress

Gamma aminobutyrate (GABA) is a non-protein amino acid that is thought to play an important role in the modulation of the central response to stress. Mechanisms by which GABA may facilitate these responses to stress are metabolic and/or mechanical disruptions. Environmental stresses increase GABA accumulation through cytosolic acidification, induce an acidic pH-dependent activation of glutamate...

متن کامل

Canonical Modeling of the Multi-Scale Regulation of the Heat Stress Response in Yeast

Heat is one of the most fundamental and ancient environmental stresses, and response mechanisms are found in prokaryotes and shared among most eukaryotes. In the budding yeast Saccharomyces cerevisiae, the heat stress response involves coordinated changes at all biological levels, from gene expression to protein and metabolite abundances, and to temporary adjustments in physiology. Due to its i...

متن کامل

Coordination of frontline defense mechanisms under severe oxidative stress

Complexity of cellular response to oxidative stress (OS) stems from its wide-ranging damage to nucleic acids, proteins, carbohydrates, and lipids. We have constructed a systems model of OS response (OSR) for Halobacterium salinarum NRC-1 in an attempt to understand the architecture of its regulatory network that coordinates this complex response. This has revealed a multi-tiered OS-management p...

متن کامل

Chloroplast Retrograde Regulation of Heat Stress Responses in Plants

It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus ...

متن کامل

Stress-Dependent Coordination of Transcriptome and Translatome in Yeast

Cells rapidly alter gene expression in response to environmental stimuli such as nutrients, hormones, and drugs. During the imposed "remodeling" of gene expression, changes in the levels of particular mRNAs do not necessarily correlate with those of the encoded proteins, which could in part rely on the differential recruitment of mRNAs to translating ribosomes. To systematically address this is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular bioSystems

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2011